DIAGNOSTIK PENYAKIT GINJAL KRONIS MENGGUNAKAN MODEL KLASIFIKASI SUPPORT VECTOR MACHINE

Authors

  • Taryadi Taryadi STMIK Widya Pratama
  • Era Yunianto STMIK Widya Pratama
  • Kasmari Kasmari Universitas Stikubank Semarang

DOI:

https://doi.org/10.47775/ictech.v19i1.291

Keywords:

Penyakit Ginjal; diagnosa; decision support system; support vector machine;klasifikasi;

Abstract

Penyakit ginjal atau biasa dikenal dengan gagal ginjal merupakan suatu kondisi menurunnya fungsi ginjal yang dapat mengakibatkan ketidakmampuan ginjal dalam menjalankan tugasnya. Penderita penyakit ginjal berpotensi masuk ke fase kronis. Penyakit ginjal kronik merupakan penurunan fungsi ginjal secara bertahap selama tiga bulan yang mengakibatkan terhentinya fungsi ginjal secara total. Tujuan dari pengembangan ini adalah suatu sistem pendukung keputusan bagi dokter dalam mendiagnosis pasien penyakit ginjal. Sistem menampilkan hasil prediksi apakah pasien penyakit ginjal sudah memasuki fase penyakit ginjal kronis atau belum. Metodologi penelitian ini terdiri dari dua tahap utama: pemodelan klasifikasi dan pengembangan sistem. Pemodelan klasifikasi terdiri dari pengumpulan data, persiapan data, pengelompokan data, klasifikasi, ekstraksi aturan. Pengembangan sistem didasarkan pada aturan yang diekstraksi sebelumnya. Penelitian ini menghasilkan suatu sistem yang dapat mendeteksi suatu kondisi penyakit ginjal kronis berdasarkan beberapa faktor dengan akurasi sebesar 96,34%.

References

World Kidney Day, 2015, “Chronic Kidney Disease”.

World Health Organization (WHO), 2015, “Country Statistics and Global Health Estimates. 2015”.

Indonesian Renal Registry, 2012, “5 th Report Of Indonesian Renal Registry", Program Indonesian Ren Regist, 2012:12-13.

Han, J & Kamber, M 2006, "Data Mining Concepts and Techniques", Second Edition, Printed in the United States of America. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

Chatterjee, S., Dzitac S.; Sen S., Rohatinovici N.C., Dey N., Ashour A.S, Balas V.E., 2017 “Hybrid modified Cuckoo Search-Neural Network in chronic kidney disease classification””. 14th International Conference on Engineering of Modern Electric Systems (EMES), pp 164 – 167

Abhinandan, D, 2015. “A Classification of CKD Cases Using MultiVariate K-, International Journal and Research Publications, Volume5, Issue 8, August 2015, ISSN 2250-3153.

Dulhare U.N., Ayesha M., 2016, “Extraction of action rules for chronic kidney disease using Naïve bayes classifier”. IEEE International Conference on Computational Intelligence and Computing Research (ICCIC).

Tazin N., Sabab S.A., Chowdhury M.T., 2016, “Diagnosis of Chronic Kidney Disease using effective classification and feature selection technique”. International Conference on Medical Engineering, Health Informatics and Technology (MediTec).

Tundjungsari V., Yugaswara H., 2015, "Supporting collaborative emergency response system wit reputation-based trust peer-to-peer file sharing.", Technology, Informatics, Management, Engineering & Environment (TIME-E), International Conference on. IEEE.

Kopp, Jeffrey B., et al., 2007, "Kidney patient care in disasters: lessons from the hurricanes and earthquake of 2005." Clinical Journal of the American Society of Nephrology 2.4 (2007): 814-824.

Foster, Mark, et al., 2011, "Personal disaster preparedness of dialysis patients in North Carolina." Clinical Journal of the American Society of Nephrology 6.10 (2011): 2478-2484.

Priyogi B., Selviandro N., Hasibuan Z.A., Ahmad M., 2014, “Image Clustering Using Multi-visual Features”. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014.

Williams, C, 2008, "Support Vector Machine", 1(October), 1–8.

Diana N.E., Sabiq A., 2016. “Cognitive-Affective Emotion Classification: Comparing Features Extraction Algorithm Classified by Multi-class Support Vector Machine”. International Journal of Computer and Communicatioin Engineering, Vol. 5, No. 5, pp. 350-357

Soundarapandian P., Rubini L.J., Eswaran P., 2020, “UCI Machine Learning Repository : Chronic_Kidney_Disease Data Set”,

Diana N.E., Kalsum U., Sabiq A., Jatmiko W., Mursanto P., 2016, “Comparing windowing methods on finite impulse response (FIR) filter algorithm in electroencephalography (EEG) data processing”. Journal of Theoretical and Applied Information Technology, Vol. 88, No. 3, pp.558-567

Zhu, P., Hu, Q, 2013, "Rule Extraction From Support Vector Machine Based on Consistent Region Covering Reduction”. Knowledge-Based Systems, 42, 1–8.

Published

2024-04-30

How to Cite

Taryadi, T., Yunianto, E., & Kasmari, K. (2024). DIAGNOSTIK PENYAKIT GINJAL KRONIS MENGGUNAKAN MODEL KLASIFIKASI SUPPORT VECTOR MACHINE. IC-Tech, 19(1), 39–44. https://doi.org/10.47775/ictech.v19i1.291